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Abstract

We review the construction known as the Nahm transform in a generalised context, which includes
all the examples of this construction already described in the literature. The Nahm transform for
translation invariant instantons onR4 is presented in an uniform manner. We also briefly analyse
two new examples, the second of which being the first example involving a four-manifold that is
not hyperkähler.
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1. Introduction

Since the appearance of the Yang–Mills equation on the mathematical scene in the late
1970s, its anti-self-dual (ASD) solutions have been intensively studied. The first major
result in the field was the ADHM construction of instantons onR

4 [2]. Soon after that,
Nahm adapted the ADHM construction to obtain thetime-invariantASD solutions of the
Yang–Mills equations, the so-called monopoles[24,25]. Nahm found a correspondence
between solutions of the anti-self-duality equations which are invariant under translations
in one direction and solutions of the anti-self-duality equations which are invariant under
translations in three directions. His physical arguments were formalised in a beautiful paper
by Hitchin [18].
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It was later realised that these constructions are two examples of a much more general
framework. This was first pointed out by Corrigan and Goddard in[10], and further elabo-
rated in papers by Braam and van Baal[8] (who coined the term “Nahm transform”) and
by Nakajima[26].

The Nahm transform was initially conceived as a correspondence between solutions of
the anti-self-duality equations which are invariant under dual subgroups of translations of
R

4, and many such correspondences have been described in the literature (seeSection 3).
The first goal of this paper, pursued inSection 2, is to show that the transform can be set-up
in a much larger class of four-manifolds, namely spin manifolds of non-negative scalar
curvature. It can be characterised as nonlinear version of the Fourier transform, which takes
vector bundles provided with anti-self-dual connections over a four-dimensional manifold
into vector bundles with connections over adual manifold. If further geometric structures
are available one can easily show that the transformed connection satisfies certain natural
differential conditions. In particular, if the original manifold admits a hyperkähler metric,
then the transformed connection is a quaternionic instanton.

We then list all instances of the Nahm transform described in the literature, adding two new
examples. The second one, concerning instantons on the four-sphere, is of particular interest,
for it involves a four-dimensional manifold which does not admit a complex structure.

This paper is written with a wider audience of in mind, so arguments familiar to experts
are presented in detail. We focus on the mathematical aspects and precise mathematical
statements surrounding the Nahm transform. There is an extensive physical literature relat-
ing Nahm transform and fundamental problems in physics, like quark confinement in QCD
and string dualities. For the reader interested in these issues, we recommend for instance
[16] (among other papers by van Baal) for the relevance of Nahm transform in QCD on
the lattice and[9,11,23,32]for the relations between Nahm transform and string theory.
Another interesting related topic that is out of this survey is the role of Nahm transform in
noncomutative gauge theories[1,27].

2. The Nahm transform

Let (M, gM) be a smooth oriented Riemannian spin four-manifold with non-negative
scalar curvature (RM ≥ 0). For simplicity, we assume thatM is compact. We denote byS±
the spinor bundles of positive and negative chirality.

Consider a Hermitian vector bundleE overM, and letA be an unitary anti-self-dual
connection onE; more precisely, its curvatureFA satisfies the following condition:

∗FA = −FA, (1)

where∗ denotes the Hodge star operator.
Now letT be a smooth manifold parametrising a family of (gauge equivalence classes of)

anti-self-dual connections on a fixed complex vector bundleF → M. In other words, each
t ∈ T corresponds to an anti-self-dual connectionBt on the bundleF . Typically, we can
think of T as a (submanifold of a) moduli space of irreducible anti-self-dual connections
onF → M. Note also that the Riemannian metric onM induces a naturalL2-metricgT on
T .
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The Nahm transform from M to Tis a mechanism that transforms Hermitian vector
bundles with unitary anti-self-dual connections onM into Hermitian vector bundles with
unitary connections onT . If T parameterises a family of flat connections overM, we will
say that the transform isflat; otherwise, we will say that the Nahm transform isnon-flat.

Let us now describe the transform in detail. On the tensor bundleE ⊗ F , we have a
twisted family of anti-self-dual connectionsAt = A⊗ 1F + 1E ⊗ Bt . We further assume
that this family is1-irreducible, in the sense that:

∇At s = 0⇒ s = 0 ∀t ∈ T,

i.e. the tensor bundleE⊗ F has no covariantly constant sections.
We consider the family of coupled Dirac operators:

DAt : L2
p(E⊗ F ⊗ S+)→ L2

p−1(E⊗ F ⊗ S−)

letD∗At
denote the dual Dirac operator. The Dirac LaplacianD∗At

DAt is related to the trace
Laplacian∇∗At

∇At via the Weitzenböck formula:

D∗At
DAt = ∇∗At

∇At − F+At
+ 1

4RM. (2)

Applying (2) to a sections ∈ L2
p(E⊗ F ⊗ S+), and integrating by parts, we obtain

‖DAt s‖2 = ‖∇At s‖2+
1

4

∫
M

RM〈s, s〉 ≥ 0 (3)

with equality if and only ifs = 0, sinceF+At
= 0 andRM ≥ 0. Therefore, we conclude that

kerDAt = {0} for all t ∈ T .
This means that̂E = −Index{DAt } is a well-defined Hermitian vector bundle overT ;

the fibreÊt is given by cokerDAt .
Furthermore, lettingĤ denote the trivial Hilbert bundle overT with fibres given by

L2
p−1(E⊗F⊗S−), one can also define an unitary connectionÂ via theprojection formula:

∇
Â
= Pdι, (4)

whereι : Ê → Ĥ denotes the natural inclusion,d denotes the trivial covariant derivative
on Ĥ andP : Ĥ → Ê denotes the orthogonal projection induced by theL2 inner product;
at eacht ∈ T , this projection can be expressed in the following way:

P(t) = 1
Ĥ
−DAtGAtD

∗
At
, (5)

whereGAt = (D∗At
DAt )

−1 is the Green’s operator for the Dirac Laplacian.
Notice that ift, t′ ∈ T are such that the corresponding connectionsBt andBt′ are gauge

equivalent, then clearlyAt andAt′ are also gauge equivalent. Hence there is a natural
isomorphism kerD∗At

−→∼ kerD∗At′
, and the index bundlêE descends to a bundle on the

quotientT/G, whereG denotes the group of gauge transformations ofF . For this reason,
we assume from now on thatT parameterises a family of gauge equivalence classes of
irreducible anti-self-dual connections onF .

The pair(Ê, Â) is called theNahm transformof (E,A).
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Remark 1. The key necessary and sufficient condition for the transform to work is the
vanishing of the kernel of the Dirac operatorsDAt for all t ∈ T . This means that the
non-negativity condition on the scalar curvatureRM can be weakened. Indeed, consider the
following bilinear Hermitian pairing onL2(E⊗ F ⊗ S+):

{s1, s2} :=
∫
M

RM〈s1, s2〉, s1, s2 ∈ L2(E⊗ F ⊗ S+).

Using theWeitzenböck formula(2), it is easy to see that kerDAt = 0 if and only if {s, s} ≥
−4‖∇At s‖2 for all s ∈ L2(E⊗ F ⊗ S+) and allt ∈ T , with equality if and only ifs = 0.

Lemma 2. If A andA′ are two gauge equivalent connections on a vector bundleE→ X,
thenÂ andÂ′ are gauge equivalent connections on the transformed bundleÊ→ Y .

In other words, the Nahm transform yields a well-defined map from the moduli space of
gauge equivalence classes of anti-self-dual connections onE→ M into the space of gauge
equivalence classes of connections onÊ→ T .

Proof. SinceA andA′ are gauge equivalent, there is a bundle automorphismh : E → E

such that∇′A = h−1∇Ah. Takeg = h⊗ 1F ∈ Aut(E⊗ F), so that∇A′t = g−1∇Atg, hence

D∗
A′t
= g−1D∗At

g, for all t ∈ T . Thus if {Ψi} is a basis for kerD∗At
, then{Ψ ′i = g−1Ψi} is a

basis for kerD∗
A′t

. Sog can also be regarded as an automorphism of the transformed bundle

Ê. It is then easy to see that:

∇
Â′ = P ′dι′ = (g−1P ′g)d(g−1ι′g) = g−1∇

Â
g

sincedg−1 = 0, for g = h⊗ 1E does not depend ont. �

The Nahm transformed connectionÂ was defined above in a rather coordinate-free man-
ner. For many calculations, it is important to have a more explicit description. First note
that the rank of the transformed bundleÊ is just the index of the Dirac operatorD∗At

for
somet ∈ T , so it is given by

r̂ = rankÊ = −
∫
M

ch(E) · ch(F) ·
(

1− 1

24
p1(M)

)
, (6)

wherep1(M)denotes the first Pontryagin class ofM. Recall that sinceM is a spin four-manifold,
then

p = 1

24
p1(M)[M] = 1

192π2

∫
M

Tr(RM ∧ RM)

is an even integer (so-calledâ-genus ofM).
Now let {Ψi = Ψi(x; t)}r̂i=1 be linearly independent solutions of the Dirac equation

D∗Aξ
Ψi = 0. We can assume that〈Ψi, Ψj〉 = δij , where〈·, ·〉 denotes theL2 inner product on

Ĥ . Clearly,{Ψi}r̂i=1 forms a local orthonormal frame for̂E. In this choice of trivialisation,

the components of the connection matrixÂ can be written in the following way:

Âij = 〈Ψi,∇ÂΨj〉 = 〈Ψi, dΨj〉 =
∫
M

Ψi(x; t)† • d

dt
Ψj(x; t)d4x, (7)
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where• denotes Clifford multiplication.
In this trivialisation, the curvature can be expressed as follows:

(F
Â
)ij = 〈Ψi,∇Â∇ÂΨj〉 = 〈Ψi, dPdΨj〉 = 〈Ψi, dDAtGAtD

∗
At
dΨj〉

=−〈D∗At
dΨi,GAtD

∗
At
dΨj〉.

We define∆ = [D∗At
, d]; this is an algebraic operator acting as

∆ : L2(M × T, π∗1(E⊗ F ⊗ S−))→ L2(M × T, π∗1(E⊗ F ⊗ S+)⊗ π∗2Ω
1
T ),

whereπ1 andπ2 are the projections ofM×T onto the first and second factors, respectively.
More precisely, this operator can be expressed in terms of Clifford multiplication; in local
coordinates:

∆ =
dimT∑
k=1

δk(x; t)dtk,

whereδk(x; t) is a local section ofπ∗1(E⊗ F ⊗ S−). With this in mind, we conclude that:

∆(Ψ) =
dimT∑
k=1

δk(x; t) • Ψ dtk = ∆ • Ψ,

where• denotes Clifford multiplication. Clearly, ifΨ ∈ kerD∗At
, thenD∗At

dΨ = ∆ • Ψ ,
Therefore, we have

(F
Â
)ij = −〈∆ • Ψi,GAt (∆ • Ψj)〉. (8)

It is important to note that the transformed connectionÂ is smooth, but since the parameter
spaceT might not be compact,̂A might not have finiteL2-norm (i.e. finite Yang–Mills
action).

2.1. The topology of the transformed bundle

Let us now study the topological invariants of the transformed bundle. Recall that one
can define auniversal bundle with connectionover the productM × T in the following
way [3]. LetA denote the set of all connections onF , and letG denote the group of gauge
transformations (i.e. bundle automorphims). Moreover, letG denote the structure group of
F , so thatF can be associated with a principalGE bundleP overM by means of some
representationρ : G→ C

n, wheren = rankF .Gacts onF×Abyg(p,A) = (g(p), g(A));
This action has no fixed points, and it yields a principalG-bundleE×A→ Q, whereQ =
E×A/G.

The structure groupG also acts onE×A, and since this action commutes with the one
byG, G acts onQ. Moreover, theG-action onQir = E×Air/G has no fixed points, where
Air denotes the set of irreducible connections onF . We end up with a principalG bundle
Qir → M × (Air/G), and we denote bỹP the associated vector bundleQir ×ρ C

n. SinceT
is a submanifold ofAir/G, we define thePoincaré bundleP→ M × T as the restriction of
P̃.
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The principalG bundleQir also has a natural connectionω̃, constructed as follows. The
spaceE×Air has a Riemannian metric which is equivariant underG×G, so that it descends
to aG-equivariant metric onQir . The orthogonal complements to the orbits ofG yields
the connectioñω. Passing to the associated vector bundleP̃ and restricting it toM × T

gives a connectionω on thePoincaré bundleP. The pair(P, ω) is universal in the sense
that(P, ω)|M×{t} � (F, Bt) [3].

The Atiyah–Singer index theorem for families allows us to compute the Chern character
of the transformed bundle via the formula:

chÊ = −
∫
M

ch(E) · ch(P) ·
(

1− 1

24
p1(M)

)
, (9)

where the minus sign is needed becauseÊ is the bundle of cokernels. The curvatureΩ of
the Poincaré connectionω can be easily computed, see[3]. In examples, that can then be
used to compute the Chern character ofP.

2.2. Differential properties of transformed connection

Since the expression(8) for the curvature of the transformed connection does not de-
pend explicitly on the curvature of the original connectionA, it is in general very hard to
characterise any particular properties ofF

Â
.

For instance, when the parameter spaceT is four-dimensional, one would like to know
whetherF

Â
is anti-self-dual. This seems to be a very hard question in general; we now offer

a few positive results.
First, note that the algebraic operator∆ = [DAt , d] can also be thought as a section of

the bundleπ∗1L⊗ π∗2Ω
1
T , whereL = End(E⊗ F ⊗ S−).

Proposition 3. If [GAt ,∆] = 0, thenF
Â

is proportional to∆ ∧∆ as a two-form over the
parameter space T. In particular, if T is four-dimensional, F

Â
is anti-self-dual if and only

if ∆ ∧∆ is a section ofπ∗1L⊗ π∗2Ω
2,−
T .

Proof. If GAt∆ = ∆GAt , it follows from (8) that:

(F
Â
)ij = −〈∆ • Ψi,∆ • (GAtΨj)〉 = −〈∆ •∆ • Ψi,GAtΨj〉.

It is then easy to see from the last expression that each component(F
Â
)ij is proportional to

∆ ∧∆ as a two-form overT . �

WhenM is a Kähler or hyperkähler manifold, complex analytic methods can also be
useful. We turn to two well-known results concerning these cases.

Proposition 4. If M and T are Kähler manifolds, then the transformed bundlêE has a
natural complex structure, which is compatible witĥA. In particular, the curvature of the
transformed connection is of type(1,1).

It is important to recall that ifM is a Kähler manifold, then all connected components of
the moduli space of anti-self-dual connections onM are also Kähler. We include an outline



M. Jardim / Journal of Geometry and Physics 52 (2004) 313–327 319

of the proof of this well-known result for the sake of completeness, and for the convenience
of the reader.

Proof. The anti-self-dual connectionAt induces a holomorphic structure on the tensor
bundleE ⊗ F , and the Dirac operators can be written in terms of the Dolbeault operators
in the following manner:

DAt = 2(∂̄At − ∂̄∗At
) and D∗At

= 2(∂̄∗At
− ∂̄At ).

Therefore Hodge theory gives identifications for eacht ∈ T :

kerDAt = ker ∂̄At ⊕ ker ∂̄∗At
= H0(M,E⊗ F)⊕H2(M,E⊗ F),

kerD∗At
= ker ∂̄∗At

∩ ker ∂̄At = H1(M,E⊗ F).

This means that̂E can be identified (as a smooth vector bundle) with the cohomology of
the family Dolbeault complex:

E⊗ F
∂̄At−→ E⊗ F ⊗Ω

0,1
M

∂̄At−→ E⊗ F ⊗Ω
0,2
M .

General theory[13, pp. 79–80]then implies that̂E also has a holomorphic structure, with
which the connection̂A defined via the projection formula(4) is compatible. �

Recall that a Riemannian four-manifoldM is said to behyperkählerif its holonomy
group is contained in Sp(1). This implies thatM carries three almost complex structures
(I, J,K) which are parallel with respect to the Levi-Civita connection and satisfy quater-
nionic relationsIJ = −JI = K.

A quaternionic instantonis a connectionA on a complex vector bundleV over a hy-
perkähler manifoldT whose curvatureFA is of type (1,1) with respect to all complex
structures[5]. In particular, ifT is four-dimensional then a quaternionic instanton is just an
anti-self-dual connection.

Proposition 5. If M and T are hyperkähler manifolds, then the transformed connection is
a quaternionic instanton. In particular, if T is four-dimensional then̂A is anti-self-dual.

As in Proposition 4, the hypothesis here are slightly redundant, for ifM is hyperkähler,
then all connected components of the moduli space of anti-self-dual connections onM are
also hyperkähler.

Proof. Each choice of a Kähler structure onM induces a choice of a Kähler structure on
T ; by Proposition 4, F

Â
is of type(1,1) with respect to this structure. ThusF

Â
is of type

(1,1) with respect to all Kähler structures onT , which means that̂A is a quaternionic
instanton. �

Since the only compact four-dimensional hyperkähler manifolds are the four-torus and
the K3-surface, this last result seems to have a rather limited applicability. However, as
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we will argue inSection 3, Proposition 5can also be used to define a Nahm transform for
instantons over hyperkähler ALE spaces.

It is also important to mention that a higher-dimensional generalisation of the Nahm
transform for quaternionic instantons over hyperkähler manifolds has been described by
Bartocci et al.[5].

Remark 6. Finally, we would like to notice that the construction here presented is es-
sentially topological, in the sense that its main ingredient is simply index theory. All the
geometric structures used inSection 2(spin structure, positivity of scalar curvature, hy-
perkähler metric, etc.) were needed either because a particular differential operator was
used (i.e. the Dirac operator), or because we selected those objects (i.e. anti-self-dual con-
nection over hyperkähler manifolds) that yielded very particular transforms (anti-self-dual
connections).

One can conceive, for instance, a similar construction either based on a different pseu-
dodifferential elliptic operator, other than the Dirac operator, or allowing for classes in
K(T), rather than actual vector bundles over the parameter space. The author thus be-
lieves that a much more general construction in a “K-theory with connections”, akin to the
Fourier–Mukai transform in the derived category of coherent sheaves over algebraic vari-
eties, underlies the construction here presented. We hope to address this issue in a future
paper.

3. Examples

As we mentioned inSection 1, several examples of the Nahm transform have been
described in the literature, and we now take some time to revise them.

3.1. Invariant instantons onR4 and dimensional reduction

First, we consider the case of translation invariant instantons onR
4, for which the Nahm

transform was first developed. LetΛ be a subgroup of translationsR
4; the dual group

Λ∗ = {α ∈ (R4)∗|α(λ) ∈ Z∀λ ∈ Λ}

can be regarded as a subgroup of translations(R4)∗. With this in mind, we setM = R
4/Λ,

andT = (R4)∗/Λ∗.
A point ξ ∈ T can be canonically identified with the flat connection i· ξ, with ξ being

regarded as a (constant) one-form onM, on a topologically trivial line bundle overM. Thus
all of the Nahm transforms included in this example areflat. Conversely, it is easy to see
that a pointx ∈ M can also be thought as the flat connection i· x on a topologically trivial
line bundle overT .

At this point it might be useful to briefly remind the reader of the various gauge the-
oretical equations obtained from the anti-self-duality equations via dimensional reduc-
tion. A connection on a Hermitian vector bundle overR

4 of rank n can be regarded as
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one-form

A =
4∑

k=1

Ak(x1, . . . , x4)dxk, Ak : R
4→ u(n).

Assuming that the connection componentsAk are invariant under translation in one direc-
tion, sayx4, we can think ofA =∑3

k=1Ak(x1, x2, x3)dxk as a connection on a Hermitian
vector bundle overR3, with the fourth componentφ = A4 being regarded as a bundle
endomorphism (the Higgs field). In this way, the anti-self-dualityequations (1)reduce to
the so-called Bogomolny (or monopole) equation:

FA = ∗dφ, (10)

where∗ is the Euclidean Hodge star in dimension 3.
Now assume that the connection componentsAk are invariant under translation in two

directions, sayx3 andx4. ConsiderA =∑2
k=1Ak(x1, x2)dxk as a connection on a Hermi-

tian vector bundle overR2, with the third and fourth components combined in a complex
bundle endomorphism:Φ = (A3+ i ·A4)(dx1− i ·dx2). The anti-self-dualityequations (1)
are then reduced to the so-called Hitchin’s equations:

FA = −[Φ,Φ∗], ∂̄AΦ = 0. (11)

Finally, assume that the connection componentsAk are invariant under translation in three
directions, sayx2, x3 andx4. After gauging away the first componentA1, the anti-self-duality
equations (1)reduce to the so-called Nahm’s equations:

dTk
dx1
+ 1

2

∑
j,l

εkjl [Tj, Tl] = 0, j, k, l = {2,3,4}. (12)

Roughly speaking,the Nahm transform yield a1–1correspondence betweenΛ-invariant
instantons onR4 andΛ∗-invariant instantons on(R4)∗. Except for the caseΛ = Z

4, both
M andT are non-compact. This case is also the only one that relates instantons to instantons,
and does not involve a dimensional reduction on either side of the correspondence.

There are plenty of examples of the Nahm transform for translation invariant instantons
available in the literature, namely:

1. The trivial caseΛ = {0} is closely related to the celebrated ADHM construction of
instantons, as described by Donaldson and Kronheimer[13]; in this case,Λ∗ = (R4)∗
and an instanton onR4 corresponds to some algebraic datum (ADHM datum).

2. Λ = R gives rise to monopoles, extensively studied by Hitchin[18], Donaldson[12],
Hurtubise and Murray[19] and Nakajima[26], among several others; here,Λ∗ = R

3,
and the transformed object is, for SU(2) monopoles, an analytic solution of Nahm’s
equations defined over the open interval(−1,1) and with simple poles at the end-points.

3. If Λ = Z
4, this is the Nahm transform of Schenk[30], Braam and van Baal[8] and

Donaldson and Kronheimer[13], defining a correspondence between instantons over
two dual four-dimensional tori.

4. Λ = Z correspond to the so-called calorons, studied by Nahm[25], van Baal[31] and
others (see[28] and the references therein); the transformed object is the solution of
Nahm-type equations on a circle.
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5. The caseΛ = Z
2 (doubly periodic instantons) has been analysed in great detail by

the author[20–22] and Biquard[7]. here,Λ∗ = Z
2 × R

2, and the Nahm transform
gives a correspondence between doubly periodic instantons and certaintamesolutions
of Hitchin’s equations on a two-torus.

6. Λ = R × Z gives rise to the periodic monopoles considered by Cherkis and Kapustin
[9]; in this case,Λ∗ = Z × R, and the Nahm dual data is given by certain solutions of
Hitchin’s equations on a cylinder.

In the following two sections we will take a closer look at periodic instantons and
monopoles.

3.2. Periodic instantons

Let us now focus on the case of periodic instantons, that isΛ = Z
d andM = T

d×R
4−d ,

whered = 1,2,3,4; in these cases,Λ∗ = Z
d × R

4−d andT = T̂
d . Other useful accounts

of the Nahm transform for periodic instantons in the physical literature can be found at
[14,16], for example.

In all the above examples, the general statement one can prove is that there exists a 1–1
correspondence between instantons overM and singular solutions of the dimensionally
reduced anti-self-duality equations overT .

Indeed, the correspondence is established just as explained in the previous section, with
some minor modifications needed to deal with the non-compactness ofM. Let TF (E,A)
denote set of all pointsξ ∈ T = T

d (regarded as a trivial bundle with flat connection) such
that the Dirac operator coupled with the tensor connectionAξ = A⊗1+1⊗ξ is Fredholm.
Roughly speaking,TF (E,A) depends only on the asymptotic behaviour of the connection
A, and not on the topological invariants of the bundleE; it consists ofT minus finitely many
points.

With this in mind,TF (E,A)can be regarded as parametrising a family of elliptic Fredholm
operatorsDAξ

on the bundleE→ M. Given thatM is flat as a Riemannian manifold, the
Weitzenböck formula(2)can be used to show that kerDAξ

= 0 for all ξ ∈ TF (E,A), so that

Ê = −Index{DAt } is a Hermitian vector bundle overTF (E,A). Now Ê can be lifted to a
bundle over (a open subset of)(R4)∗. A connectionÂ on the lifted bundle is defined via the
projection formula(4), andÂ can be seen to be anti-self-dual via the hyperkähler rotation
argument inProposition 5. Now Â descends to the quotientTF (E,A), and thus defines a
solution of the dimensionally reduced anti-self-duality equations. Finally, this procedure
is invertible, sinceM can also be regarded as parametrising trivial line bundles with flat
connections overT .

This simplified statement is still not proven in full generality; only the compact cases
d = 4 andd = 2 have been fully described in the literature. The compact case (d = 4) is the
easiest one, and it is closely related to the celebrated Fourier–Mukai transform in algebraic
geometry; see for instance[8,13]. A precise result in this case is as follows.

Theorem 7. There exists a1–1correspondence between the following objects:

• SU(n) instantons overM = T
4, of charge k;

• SU(k) instantons overM = T̂
4, of charge n.
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The analysis of the non-compact cases (d = 1,2,3) involve, as we mentioned above,
a careful study of the instanton’s asymptotic behaviour, checking that the coupled Dirac
operator is indeed Fredholm and correctly applying the Fredholm theory. The key issue to
understand is how the asymptotic data gets transformed.

Doubly periodic instantons have been extensively studied by the author in[7,20–22]. Here
is the full statement of the correspondence, taking into account the asymptotic behaviour
of instantons and the singularities of the transformed Nahm data, in the simplest case of
SU(2) gauge group.

Theorem 8. There exists a1–1correspondence between the following objects:

• An anti-self-dualSU(2)connection A on a rank2 vector bundleE→ T
2×R

2 such that

1

8π2

∫
T2×R2

|FA|2 = k,

and whose asymptotic expansion, up to gauge transformations, asr→∞ and for some
ξ = λ1+ iλ2 ∈ T̂

2, µ = µ1+ iµ2 ∈ C, andα ∈ [0,1/2), is given either by

i

(
a0 0

0 −a0

)
+O(r−1−δ)

with a0=λ1 dx+λ2 dy+(µ1 cosθ−µ2 sinθ)
dx

r
+(µ1 sinθ+µ2 cosθ)

dy

r
+αdθ,

if ξ, µ, α != 0; or, if ξ, µ, α = 0, by

i

(
−1 0

0 1

)
dθ

ln r2
+ 1

r ln r2

(
0 −ā0

a0 0

)
+O(r−1( ln r)−1−δ)

with a0 = −eiθ(dx+ i dy).

• An Hermitian connection B on a rank k Hermitian vector bundleV → T̂
2 \ {±ξ} and a

skew-Hermitian bundle endomorphismΦ (the Higgs field) satisfying Hitchin’s equations,
and having at most simple poles at±ξ. Moreover, the residue ofΦ either has rank one,
if ξ != −ξ, or has rank two, if ξ = −ξ, with ±µ being the only nonzero eigenvalues;
similarly the monodromy of the connection B near the punctures is semisimple, with
either only one nontrivial eigenvalueexp(∓2πiα), or two if ξ0 = −ξ0.

The main feature of the above statement is the matching of the instanton’s asymptotic
behaviour with the Nahm transformed data’s singularity behaviour.

It is certainly possible to generalise this correspondence for higher rank (see[21]), but
that would require a much more lengthy analysis of both the asymptotic behaviour ofA

and the singularity data of(B,Φ). It suffices to say that the while the instanton numberk

determines the rank of the Nahm transformed bundleV , the rank of the original instantonA
determines the number of poles of the transformed Higgs fieldΦ (counted according with
the rank of its residues).
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One expects similar statements to hold also in the casesd = 1 (calorons) andd = 3 (spa-
tially periodic instantons); although the general features of the Nahm transform in these
cases are certainly known[23,26,31], a complete statement showing how the instantons
asymptotic behaviour gets translated into the singularity behaviour for the Nahm trans-
formed data is still missing.

Some positive results are available for calorons. AnL2-index theorem for the Dirac
operator coupled to calorons has been established by Nye and Singer[29], while the
Nahm transform itself has been studied by Nye in his thesis[28]. Nye has identified
the appropriate asymptotic behaviour for calorons, and the corresponding singularity be-
haviour for the Nahm data on the dual circleS1. He has also constructed the Nahm
transform from calorons to Nahm data onS1 and from Nahm data onS1 to calorons;
however, he has not proved that these are mutually inverse, something that can prob-
ably be done using holomorphic geometry and the cohomological argument of
[9,13,21].

Moreover, it is also reasonable to expect that the above results ford = 2,4 (as well as
the expected ones ford = 1,3) can be adapted to deal withZp-equivariantinstantons on
T
d × R

n−d .

3.3. Periodic monopoles

The case of periodic monopoles, that isΛ = Z
d × R, whered = 0,1,2. As in the case

of instantons, the Nahm transform yields a correspondence between the following objects:

• monopoles onM = T
d × R

3−d ;
• solutions of the dimensionally reduced anti-self-duality equations overT = T

d × R.

The non-periodic case (d = 0) was first described by Hitchin in his classical paper[18]
in the simplest case of gauge group SU(2), and later generalised by Hurtubise and Murray
[19] to include all classical groups.

Theorem 9. There exists a1–1correspondence between the following objects:

• AnSU(2)connection A on a rank2 vector bundleE→ R
3 and a skew-Hermitian bundle

endomorphismΦ (the Higgs field) satisfying the Bogomolny equation(10), and whose
asymptotic expansion asr→∞ is given by, up to gauge transformations and for some
positive integer k(the monopole number):

Φ ∼
(

i 0

0 −i

)
·
(

1− k

2r

)
+O(r−2), |∇AΦ| ∼ O(r−2) and

∂|Φ|
∂r
∼ O(r−2).

• An Hermitian connection∇ on a rank k Hermitian vector bundle V over the open interval
I = (−1,1) and three skew-Hermitian bundle endomorphismsTa (a = 1,2,3)satisfying
Nahm’s equations(12), and having at most simple poles att = ±1, but are otherwise
analytic. Moreover, the residues of(T1, T2, T3) define an irreducible representation of
su(2) at each pole.

The case of periodic monopoles (d = 1) is studied by in detail Cherkis and Kapustin[9].
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Theorem 10. There exists a1–1correspondence between the following objects:

• An SU(2)connection A on a rank2 vector bundleE→ S1× R
2 and a skew-Hermitian

bundle endomorphismφ (the Higgs field) satisfying the Bogomolny equation(10), and
whose asymptotic expansion asr = |x| → ∞ is given by, up to gauge transformations
and for some positive integer k(the monopole number) and parametersv,w ∈ R:

A ∼ w+
(

i 0

0 −i

)
· k

2π
θ +O(r−1), φ ∼ v+

(
i 0

0 −i

)
· k

2π
logr +O(1),

|∇AΦ| ∼ O(r−1) and
∂|Φ|
∂r
∼ O(r−2).

• An Hermitian connection B on a rank k Hermitian vector bundleV → Ŝ1 × R � C
∗

andΦ satisfying Hitchin’s equations(11), and whose asymptotic expansion ass→∞
are given by, up to gauge transformations:

|FB| ∼ O(|s|−3/2), Tr(Φ(s)α) is bounded forα = 1,2, . . . , k − 1

and detΦ(s) ∼ e−2π(v+iw) ·O(e±2πs).

A careful study of doubly periodic monopoles (thed = 2 case) is still lacking. It is
interesting to note that the Nahm transform of doubly periodic monopoles isself-dual,
in the sense thatM = T = T

2 × R; in other words, the Nahm transform takes doubly
periodic monopoles into (singular) doubly periodic monopoles, probably permutating rank
and charge.

3.4. K3 surfaces

A very interesting example of anon-flatNahm transform was described by Bartocci et al.
[4,5]. LetM be a reflexiveK3 surface, which is defined by the following requirements:

1. M admits a Kähler formω whose cohomology classH satisfiesH2 = 2;
2. M admits a holomorphic line bundleL whose Chern class< = c1(L) is such that

< ·H = 0 and<2 = −12;
3. if D is the divisor of a nodal curve onM, one hasD ·H > 2.

Now letT be the moduli space of instantons of rank 2 with determinant line bundleL (so
thatc1 = <) andc2 = −1 overM; it can be shown thatT is isomorphic toM as a complex
algebraic variety[4]. Since bothM andT are hyperkähler manifolds, Nahm transform takes
instantons overM into instantons overT . Furthermore, under appropriate circumstances,
the transform is invertible, and one obtains in particular the following result[4,5].

Theorem 11. There exists a1–1correspondence between the following objects(n ≥ 2 and
k ≥ 1):

• SU(n) instantons of charge k over M;
• U(2n+ k) instantons of charge k over T, with first Chern class given byk<̂.
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Finally, we would like to point out that a similar result also holds for hyperkähler ALE
four-manifolds; a preliminary version was announced in[6] (see also[17]).

3.5. First new example: doubly periodic instantons

Let us now proceed to describe two new examples ofnon-flatNahm transforms. The
second one, described below, is particularly interesting, for it is the only example in which
M is not a hyperkähler four-manifold.

Our first new example of a non-flat Nahm transform is based on the observation that,
once asymptotic parameters(ξ, µ, α) are fixed, the moduli spaceM(1,ξ,µ,α) of charge one
SU(2) doubly periodic instantons (as described inTheorem 8) is justT2×R

2 with the flat
metric[7].

Thus setM = T
2 × R

2 andT = M(1,ξ,µ,α) = T
2 × R

2; let E → M be a Hermitian
vector bundle of rankn, and letA be an anti-self-dual connection onE. Denote the points of
T by the pair(F, B) consisting of a rank 2 Hermitian vector bundleF and an anti-self-dual
connectionB. If the asymptotic state of the connectionA does not containξ, then the twisted
connectionAB = A⊗ 1+ 1⊗B contains no flat factors at infinity, and the Dirac operators
D±AB

are Fredholm[21]. This means that the Nahm transformed bundle with connection

(Ê, Â)→ T are well defined, according to procedure inSection 2. Using the hyperkähler
rotation method ofProposition 5, one sees that̂A is also anti-self-dual.

Clearly,M can also be regarded as a moduli space of instantons onT , so there is a
Nahm transform that transforms instantons onT into instantonsM. It seems reasonable to
conjecture that these transforms are the inverse of one another.

3.6. Second new example: instantons over the four-sphere

Let us now briefly analyse the Nahm transform for the simplest possible compact spin
four-manifold with non-negative scalar curvature. LetM = S4 be the round four-dimensional
sphere, and letT be the moduli space of SU(2) instantons overS4 with charge one; as a
Riemannian manifold,T is a hyperbolic five-ballB5 [15].

So letE → S4 be a complex vector bundle of rankn ≥ 2, provided with an instanton
A of chargek ≥ 1. Nahm transform gives a bundlêE→ B5 of rank 2k + r, by the index
formula(6). SinceB5 is simply connected, this is the only nontrivial topological invariant of
the transformed bundle. This illustrates the wide range of possibilities for a Nahm transform
beyond the confines of hyperkähler geometry.
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