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Abstract

We review the construction known as the Nahm transform in a generalised context, which includes
all the examples of this construction already described in the literature. The Nahm transform for
translation invariant instantons @f is presented in an uniform manner. We also briefly analyse
two new examples, the second of which being the first example involving a four-manifold that is
not hyperkahler.
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1. Introduction

Since the appearance of the Yang—Mills equation on the mathematical scene in the late
1970s, its anti-self-dual (ASD) solutions have been intensively studied. The first major
result in the field was the ADHM construction of instantonskth[2]. Soon after that,
Nahm adapted the ADHM construction to obtain tlee-invariantASD solutions of the
Yang—Mills equations, the so-called monopo|24,25] Nahm found a correspondence
between solutions of the anti-self-duality equations which are invariant under translations
in one direction and solutions of the anti-self-duality equations which are invariant under
translations in three directions. His physical arguments were formalised in a beautiful paper
by Hitchin [18].
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It was later realised that these constructions are two examples of a much more general
framework. This was first pointed out by Corrigan and Goddafd®, and further elabo-
rated in papers by Braam and van BEg]l (who coined the term “Nahm transform”) and
by Nakajima[26].

The Nahm transform was initially conceived as a correspondence between solutions of
the anti-self-duality equations which are invariant under dual subgroups of translations of
R#, and many such correspondences have been described in the literatuBedser 3.

The first goal of this paper, pursued3ection 2is to show that the transform can be set-up

in a much larger class of four-manifolds, namely spin manifolds of non-negative scalar
curvature. It can be characterised as nonlinear version of the Fourier transform, which takes
vector bundles provided with anti-self-dual connections over a four-dimensional manifold
into vector bundles with connections ovedaal manifold. If further geometric structures

are available one can easily show that the transformed connection satisfies certain natural
differential conditions. In particular, if the original manifold admits a hyperkahler metric,
then the transformed connection is a quaternionic instanton.

We then listallinstances of the Nahm transform described in the literature, adding two new
examples. The second one, concerning instantons on the four-sphere, is of particular interest,
for it involves a four-dimensional manifold which does not admit a complex structure.

This paper is written with a wider audience of in mind, so arguments familiar to experts
are presented in detail. We focus on the mathematical aspects and precise mathematical
statements surrounding the Nahm transform. There is an extensive physical literature relat-
ing Nahm transform and fundamental problems in physics, like quark confinementin QCD
and string dualities. For the reader interested in these issues, we recommend for instance
[16] (among other papers by van Baal) for the relevance of Nahm transform in QCD on
the lattice and9,11,23,32]for the relations between Nahm transform and string theory.
Another interesting related topic that is out of this survey is the role of Nahm transform in
noncomutative gauge theorigs27].

2. The Nahm transform

Let (M, g)) be a smooth oriented Riemannian spin four-manifold with non-negative
scalar curvatureKy, > 0). For simplicity, we assume thaf is compact. We denote 7"
the spinor bundles of positive and negative chirality.

Consider a Hermitian vector bundle over M, and letA be an unitary anti-self-dual
connection orE; more precisely, its curvaturg, satisfies the following condition:

xFy = —Fy, (1)

wherex denotes the Hodge star operator.

Now letT be a smooth manifold parametrising a family of (gauge equivalence classes of)
anti-self-dual connections on a fixed complex vector buiitile- M. In other words, each
t € T corresponds to an anti-self-dual connect®non the bundleF. Typically, we can
think of T as a (submanifold of a) moduli space of irreducible anti-self-dual connections
on F — M. Note also that the Riemannian metric &hinduces a natural2-metricgr on
T.
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The Nahm transform from M to Ts a mechanism that transforms Hermitian vector
bundles with unitary anti-self-dual connections &hinto Hermitian vector bundles with
unitary connections ofi. If T parameterises a family of flat connections o¥erwe will
say that the transform fat; otherwise, we will say that the Nahm transformrmign-flat

Let us now describe the transform in detail. On the tensor buAdie F, we have a
twisted family of anti-self-dual connections = A ® 1r + 1¢ ® B;. We further assume
that this family isl-irreducible in the sense that:

Vas=0=s5s=0 VteT,

i.e. the tensor bundl€ ® F has no covariantly constant sections.
We consider the family of coupled Dirac operators:

Dy LAE®@F®S) —» L2 ((E®F®S)

let D% denote the dual Dirac operator. The Dirac LapIadijDA, is related to the trace
LapIaC|anV* ,Va, via the Weitzenbdck formula:

DZDA[ =VZ,VA1_FA,+£_1RM' (2)

Applying (2) to a sectiors € L%(E ® F ® ST), and integrating by parts, we obtain

1DasI2 = 1917 + 5 / Ry (s, s) = 0 €)
4y
with equality if and only ifs = 0, sinceFj{t = 0 andRy, > 0. Therefore, we conclude that
kerD4, = {0} forallr e T.
This means that: = —Index{D,,} is a well-defined Hermitian vector bundle ovEr
the fibre £, is given by cokemDy, .
Furthermore, letting? denote the trivial Hilbert bundle ovef with fibres given by
2_1(E® F® S™), one can also define an unitary connectiovia theprojection formula

Vi = Pdt, (4)

where: : E — H denotes the natural inclusiod,denotes the trivial covariant derivative
onH andP : H — E denotes the orthogonal projection induced by tRénner product;
at eachr € T, this projection can be expressed in the following way:

P = 11:1 - DAtGAtDZ[’ (5)

whereG 4, = (Djt DA,)‘l is the Green’s operator for the Dirac Laplacian.

Notice that ifz, ¥ € T are such that the corresponding connectiBpand B, are gauge
equivalent, then clearli; and A, are also gauge equivalent Hence there is a natural
isomorphism ke — kerD} , and the index bundlé descends to a bundle on the
quotient7/g, whereg denotes the group of gauge transformationg ofor this reason,
we assume from now on thdt parameterises a family of gauge equivalence classes of
irreducible anti-self-dual connections én

The pair(ﬁ:, A) is called theNahm transfornof (E, A).
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Remark 1. The key necessary and sufficient condition for the transform to work is the
vanishing of the kernel of the Dirac operatabs, for all 1 € T. This means that the
non-negativity condition on the scalar curvat®g can be weakened. Indeed, consider the
following bilinear Hermitian pairing olL?(E ® F ® ST):

{51, 82} = / Ry(s1,52), s1,52€ LAE®F®Sh).
M

Using theWeitzenbdck formul@), it is easy to see that kér,, = 0 if and only if{s, s} >
—4||V,,s|?foralls e L2(E® F ® ST) and all e T, with equality if and only ifs = 0.

Lemma2. If Aand A" are two gauge equivalent connections on a vector buiidie X,
thenA and A’ are gauge equivalent connections on the transformed bukidie Y.

In other words, the Nahm transform yields a well-defined map from the moduli space of
gauge equivalence classes of anti-self-dual connectios-en M into the space of gauge
equivalence classes of connectionsior> T.

Proof. SinceA andA’ are gauge equivalent, there is a bundle automorphistt — E
such thatv), = h='Vh. Takeg = h ® 1r € AU(E ® F), so thatV,, = g~1V,,¢, hence
D%, = g D} g forallz € T. Thus if {;} is a basis for keD%, , then{y] = ¢~} is a
t
basis for keD’,,. Sog can also be regarded as an automorphism of the transformed bundle
E. Itis then easy to see that:
Vi =Pd/ = (g Pedg 'e) =g Ve

sincedg™ = 0, forg = h ® 15 does not depend an O

The Nahm transformed connectidrwas defined above in a rather coordinate-free man-
ner. For many calculations, it is important to have a more explicit description. First note
that the rank of the transformed bundieis just the index of the Dirac operatdr; for
somet € T, so itis given by

7 =rankE = —/ ch(E) - ch(F) - <1 - ipl(M)> , (6)
" 24

wherep1 (M) denotes the first Pontryagin classf Recall that sinca/ is a spin four-manifold,
then

1 1
p= ﬂl’l(M)[M] = Toog2 /M Tr(Rm A Ryr)

is an even integer (so-callédgenus of}).

Now let {¥; = W¥;(x;n)};_, be linearly independent solutions of the Dirac equation
D’;\E ¥; = 0. We can assume thak;, ¥;) = §jj, where(-, -) denotes the.2 inner product on
H. Clearly,{l,lli}f:1 forms a local orthonormal frame fd#. In this choice of trivialisation,
the components of the connection matfixcan be written in the following way:

Aj = (W, VW) = (¥, d¥)) = f x0T e d%wj(x; 1) d*x, (7
M
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wheree denotes Clifford multiplication.
In this trivialisation, the curvature can be expressed as follows:

(FRij = (¥, ViV W) = (¥, dPd¥)) = (W;,dDa,G a, D}y d¥))
= — (D%, d¥, G, D, d¥)).

We definea = [Dtx,’ d]; this is an algebraic operator acting as

A LPMXTai(EQ F®ST)) —» L2AM x T, n{(E® F ® ) @ 152},

whererr; andsr; are the projections aff x T onto the first and second factors, respectively.
More precisely, this operator can be expressed in terms of Clifford multiplication; in local
coordinates:

dimT

A= Z Sk (x; 1) dry,

k=1
whereéy (x; 1) is a local section ofrj (E ® F ® S™). With this in mind, we conclude that:

dimT
AW =Y S(unewdy =Ael
k=1

wheree denotes Clifford multiplication. Clearly, & € kerng[, thenDZrc_ilI/ =AeV,
Therefore, we have

(Fij = —(A e W, G, (Ao W), (8)

Itis important to note that the transformed connectiois smooth, but since the parameter
spaceTl’ might not be compactd might not have finiteL?-norm (i.e. finite Yang—Mills
action).

2.1. The topology of the transformed bundle

Let us now study the topological invariants of the transformed bundle. Recall that one
can define ainiversal bundle with connectiocover the product x T in the following
way [3]. Let.A denote the set of all connections shand letG denote the group of gauge
transformations (i.e. bundle automorphims). MoreoverGletenote the structure group of
F, so thatF can be associated with a princip@lz bundle P over M by means of some
representatiop : G — C",wheren = rankF.GactsonF x Abyg(p, A) = (g(p), g(A));
This action has no fixed points, and it yields a princi@ddundleE x A — Q, whereQ =
E x A/G.

The structure grouf also acts orE x A, and since this action commutes with the one
by G, G acts onQ. Moreover, theG-action onQ" = E x A" /G has no fixed points, where
A" denotes the set of irreducible connectionsforWe end up with a principali bundle
Q" — M x (A"/G), and we denote b the associated vector bund®¥ x , C". SinceT
is a submanifold ofA" /G, we define théoincaré bundlé® — M x T as the restriction of
P.
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The principalG bundleQ' also has a natural connectiéinconstructed as follows. The
spaceE x A" has a Riemannian metric which is equivariant ur@erg, so that it descends
to a G-equivariant metric or@". The orthogonal complements to the orbits®fyields
the connectiony. Passing to the associated vector burillend restricting it toM x T
gives a connectiom on thePoincaré bundléP. The pair(lP, w) is universal in the sense
that(P, )|y = (F, By) [3].

The Atiyah—Singer index theorem for families allows us to compute the Chern character
of the transformed bundle via the formula:

chE = —/ ch(E) - ch(P) - (1 - i171(1\/1)> ) 9)
p 24

where the minus sign is needed becafise the bundle of cokernels. The curvatupeof
the Poincaré connectian can be easily computed, sig}. In examples, that can then be
used to compute the Chern charactePof

2.2. Differential properties of transformed connection

Since the expressiof8) for the curvature of the transformed connection does not de-
pend explicitly on the curvature of the original connectibnit is in general very hard to
characterise any particular propertiesrgf.

For instance, when the parameter spade four-dimensional, one would like to know
whetherF; is anti-self-dual. This seems to be a very hard question in general; we now offer
a few positive results.

First, note that the algebraic operattr= [Dj,,, d] can also be thought as a section of
the bundler; £ ® 32}, whereL = EndE ® F ® S7).

Proposition 3. If [G4,, A] = 0,thenF; is proportional toA A A as a two-form over the
parameter space T. In particulaif T is four-dimensional 7'; is anti-self-dual if and only

if A A Ais asection of}L ® 152%™
Proof. If Ga,A = AG,, it follows from (8) that:
(Fpij=—(AeW;, Ae (G4, ¥)j)) = —(AeAe¥W;, G4 V).

Itis then easy to see from the last expression that each comp@ngitis proportional to
A A A as atwo-form over. O

When M is a Kahler or hyperkahler manifold, complex analytic methods can also be
useful. We turn to two well-known results concerning these cases.

Proposition 4. If M and T are Kahler manifoldsthen the transformed bundIE has a
natural complex structurevhich is compatible witli. In particular, the curvature of the
transformed connection is of typg, 1).

It is important to recall that i is a K&hler manifold, then all connected components of
the moduli space of anti-self-dual connectionsidmre also Kahler. We include an outline
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of the proof of this well-known result for the sake of completeness, and for the convenience
of the reader.

Proof. The anti-self-dual connectioA; induces a holomorphic structure on the tensor
bundleE ® F, and the Dirac operators can be written in terms of the Dolbeault operators
in the following manner:

Dy, =204, — ,) and D} =2(0% — da,).
Therefore Hodge theory gives identifications for eaehT”:

kerDy, = kerdy, @ kerd, = HO (M, E® F) ® H*(M,E® F),
ker D% = kerd% Nkerds, = H'(M,E® P).

This means thaE can be identified (as a smooth vector bundle) with the cohomology of
the family Dolbeault complex:

5 5
EQF3 EQF® Q%3 EoFo 2%

General theory13, pp. 79-80then implies that: also has a holomorphic structure, with
which the connectiom defined via the projection formul@) is compatible. O

Recall that a Riemannian four-manifold is said to behyperk&hlerif its holonomy
group is contained in Sp(1). This implies thit carries three almost complex structures
(I, J, K) which are parallel with respect to the Levi-Civita connection and satisfy quater-
nionic relationdJ = —JI = K.

A quaternionic instantoris a connectiorA on a complex vector bundIg over a hy-
perkahler manifoldl" whose curvature?, is of type (1, 1) with respect to all complex
structureg5]. In particular, ifT is four-dimensional then a quaternionic instanton is just an
anti-self-dual connection.

Proposition 5. If M and T are hyperkahler manifoldthen the transformed connection is
a quaternionic instanton. In particulaif T is four-dimensional thea is anti-self-dual

As in Proposition 4the hypothesis here are slightly redundant, favZifs hyperkahler,
then all connected components of the moduli space of anti-self-dual connectidhsmn
also hyperkahler.

Proof. Each choice of a Kahler structure a#i induces a choice of a Kahler structure on
T; by Proposition 4 F; is of type(1, 1) with respect to this structure. Thug, is of type

(1, 1) with respect to all Kahler structures @f which means thafi is a quaternionic
instanton. O

Since the only compact four-dimensional hyperkahler manifolds are the four-torus and
the K3-surface, this last result seems to have a rather limited applicability. However, as
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we will argue inSection 3 Proposition 5can also be used to define a Nahm transform for
instantons over hyperk&hler ALE spaces.

It is also important to mention that a higher-dimensional generalisation of the Nahm
transform for quaternionic instantons over hyperkéhler manifolds has been described by
Bartocci et al[5].

Remark 6. Finally, we would like to notice that the construction here presented is es-
sentiallytopological in the sense that its main ingredient is simply index theory. All the
geometric structures used 8ection 2(spin structure, positivity of scalar curvature, hy-
perkahler metric, etc.) were needed either because a particular differential operator was
used (i.e. the Dirac operator), or because we selected those objects (i.e. anti-self-dual con-
nection over hyperkéhler manifolds) that yielded very particular transforms (anti-self-dual
connections).

One can conceive, for instance, a similar construction either based on a different pseu-
dodifferential elliptic operator, other than the Dirac operator, or allowing for classes in
K(T), rather than actual vector bundles over the parameter space. The author thus be-
lieves that a much more general construction in a “K-theory with connections”, akin to the
Fourier—Mukai transform in the derived category of coherent sheaves over algebraic vari-
eties, underlies the construction here presented. We hope to address this issue in a future
paper.

3. Examples

As we mentioned irSection 1 several examples of the Nahm transform have been
described in the literature, and we now take some time to revise them.

3.1. Invariant instantons oR* and dimensional reduction

First, we consider the case of translation invariant instanto®ofor which the Nahm
transform was first developed. Latbe a subgroup of translatiof®s'"; the dual group

A* = {a € RYH*|a(L) € ZVr € A}

can be regarded as a subgroup of translatif¥{s*. With this in mind, we seM = R*/A,
andT = (RH*/A*.

A point& € T can be canonically identified with the flat connectiorgj with & being
regarded as a (constant) one-formiMnon a topologically trivial line bundle oved. Thus
all of the Nahm transforms included in this example flae Conversely, it is easy to see
that a pointc € M can also be thought as the flat connection dn a topologically trivial
line bundle over.

At this point it might be useful to briefly remind the reader of the various gauge the-
oretical equations obtained from the anti-self-duality equations via dimensional reduc-
tion. A connection on a Hermitian vector bundle o®t of rank » can be regarded as
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one-form
4
A=Y Alxn. ... xa)ddb, AR u).
k=1

Assuming that the connection componeAjsare invariant under translation in one direc-
tion, sayx4, we can think ofA = Zle Ar(x1, x2, x3) dx* as a connection on a Hermitian
vector bundle oveR3, with the fourth componenp = A4 being regarded as a bundle
endomorphism (the Higgs field). In this way, the anti-self-duaifqyations (1yeduce to
the so-called Bogomolny (or monopole) equation:

Fy = % dg, (10)

wherex is the Euclidean Hodge star in dimension 3.

Now assume that the connection componentsre invariant under translation in two
directions, say3 andx4. ConsiderA = Z,le Ay (x1, x2) dx* as a connection on a Hermi-
tian vector bundle oveR?, with the third and fourth components combined in a complex
bundle endomorphisn® = (A3 +i- A4)(dxy —i-dx2). The anti-self-dualitquations (1)
are then reduced to the so-called Hitchin's equations:

Fu = —[®, Y], 2@ =0. (11)

Finally, assume that the connection componentsre invariant under translation in three
directions, say, x3 andx,. After gauging away the first componett, the anti-self-duality
equations (1yeduce to the so-called Nahm'’s equations:

dary, 1

E]i +5 ;ekj.[n, T1=0, jki=1{234}. (12)
Roughly speakingthe Nahm transform yield &1 correspondence betweeftinvariant
instantons orR* and A*-invariant instantons oR*)*. Except for the casd = Z*, both
M andT are non-compact. This case is also the only one that relates instantons to instantons,
and does not involve a dimensional reduction on either side of the correspondence.

There are plenty of examples of the Nahm transform for translation invariant instantons

available in the literature, namely:

1. The trivial caseA = {0} is closely related to the celebrated ADHM construction of
instantons, as described by Donaldson and Kronhejr@3r in this caseA* = (R*)*
and an instanton oR* corresponds to some algebraic datum (ADHM datum).

2. A = R gives rise to monopoles, extensively studied by Hitqhig], Donaldsor{12],
Hurtubise and Murray19] and Nakajimg26], among several others; heté¢* = R3,
and the transformed object is, for SU(2) monopoles, an analytic solution of Nahm’s
equations defined over the open interi/all, 1) and with simple poles at the end-points.

3. If A = Z4 this is the Nahm transform of Schef®0], Braam and van Bad8] and
Donaldson and Kronheimgt.3], defining a correspondence between instantons over
two dual four-dimensional tori.

4. A = Z correspond to the so-called calorons, studied by N8} van Baal31] and
others (seg28] and the references therein); the transformed object is the solution of
Nahm-type equations on a circle.
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5. The cased = Z2 (doubly periodic instantons) has been analysed in great detail by
the authof20-22] and Biquard[7]. here,A* = Z? x R2, and the Nahm transform
gives a correspondence between doubly periodic instantons and ¢arteggsolutions
of Hitchin's equations on a two-torus.

6. A = R x Z gives rise to the periodic monopoles considered by Cherkis and Kapustin
[9]; in this caseA* = Z x R, and the Nahm dual data is given by certain solutions of
Hitchin’s equations on a cylinder.

In the following two sections we will take a closer look at periodic instantons and
monopoles.

3.2. Periodic instantons

Let us now focus on the case of periodic instantons, thatis Z¢ andM = T x R*~¢,
whered = 1, 2, 3, 4; in these cases\* = Z4 x R4 andT = T¢. Other useful accounts
of the Nahm transform for periodic instantons in the physical literature can be found at
[14,16] for example.

In all the above examples, the general statement one can prove is that there exists a 1-1
correspondence between instantons odeand singular solutions of the dimensionally
reduced anti-self-duality equations over

Indeed, the correspondence is established just as explained in the previous section, with
some minor modifications needed to deal with the non-compactne¥s bét Tr(E, A)
denote set of all points € T = T¢ (regarded as a trivial bundle with flat connection) such
that the Dirac operator coupled with the tensor conneciior- A ® 1+ 1®§& is Fredholm.
Roughly speakingl'r(E, A) depends only on the asymptotic behaviour of the connection
A, and not on the topological invariants of the buné&llét consists ofl” minus finitely many
points.

Withthisinmind,Tr(E, A) can be regarded as parametrising a family of elliptic Fredholm
operatorsD,, on the bundleE — M. Given thatM is flat as a Riemannian manifold, the
Weitzenbdck formul@?) can be used to show that kBpr = Oforallé € Tr(E, A), sothat
E = —Index{D,,} is a Hermitian vector bundle ovéi-(E, A). Now E can be lifted to a
bundle over (a open subset ¢R*)*. A connectionA on the lifted bundle is defined via the
projection formula(4), andA can be seen to be anti-self-dual via the hyperkahler rotation
argument inProposition 5 Now A descends to the quotied} (E, A), and thus defines a
solution of the dimensionally reduced anti-self-duality equations. Finally, this procedure
is invertible, sinceM can also be regarded as parametrising trivial line bundles with flat
connections over.

This simplified statement is still not proven in full generality; only the compact cases
d = 4andd = 2 have been fully described in the literature. The compact easeq) is the
easiest one, and it is closely related to the celebrated Fourier—Mukai transform in algebraic
geometry; see for instan¢®,13]. A precise result in this case is as follows.

Theorem 7. There exists d—1correspondence between the following objects

e SUn) instantons oveM = ’AJT"', of charge k
e SU(k) instantons oveM = T4, of charge n
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The analysis of the non-compact casés 1, 2, 3) involve, as we mentioned above,
a careful study of the instanton’s asymptotic behaviour, checking that the coupled Dirac
operator is indeed Fredholm and correctly applying the Fredholm theory. The key issue to
understand is how the asymptotic data gets transformed.

Doubly periodic instantons have been extensively studied by the auffig2@r-22] Here
is the full statement of the correspondence, taking into account the asymptotic behaviour
of instantons and the singularities of the transformed Nahm data, in the simplest case of
SU(2) gauge group.

Theorem 8. There exists d—1correspondence between the following objects

e An anti-self-duaBU(2)connection A on a ranR vector bundleE — T? x R? such that

1 2
— Fulc =k,
87'[2 /]I‘ZX]Rzl A|

and whose asymptotic expansiop to gauge transformationasr — oo and for some
E=A+iroeT? u=p1+iur € C,anda € [0, 1/2), is given either by

(a0 O —1-5
I(O _ao>+0(r )

. . dx . dy
with ag=A1 dx+X2 dy+ (1 COSH— 2 SiNG) — + (w1 SiNO+2 €OSH) — 4 db),
r r

if & w,a #£ 0;or,if & u,a =0, by

=1 0\ do 1 0 -—ao _1 —1-8
—t+ — |
I( 0 1) |nr2+r|nr2 (ao 0 )—I—O(r (Inn) )

with ag = —€?(dx + idy).

 An Hermitian connection B on a rank k Hermitian vector bundle> T2 \ {+£}and a
skew-Hermitian bundle endomorphignfthe Higgs fielflsatisfying Hitchin's equations
and having at most simple poles-a. Moreover the residue ofp either has rank one
if & £ —&, or has rank twoif & = —&, with & being the only nonzero eigenvalyes
similarly the monodromy of the connection B near the punctures is semisiwifie
either only one nontrivial eigenvaliexp(F2ria), or two if §g = —&p.

The main feature of the above statement is the matching of the instanton’s asymptotic
behaviour with the Nahm transformed data’s singularity behaviour.

It is certainly possible to generalise this correspondence for higher rank{seebut
that would require a much more lengthy analysis of both the asymptotic behaviaur of
and the singularity data @B, ®). It suffices to say that the while the instanton number
determines the rank of the Nahm transformed buiglhe rank of the original instantof
determines the number of poles of the transformed Higgs feldounted according with
the rank of its residues).
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One expects similar statements to hold also in the caAse4 (calorons) and = 3 (spa-
tially periodic instantons); although the general features of the Nahm transform in these
cases are certainly knowj3,26,31] a complete statement showing how the instantons
asymptotic behaviour gets translated into the singularity behaviour for the Nahm trans-
formed data is still missing.

Some positive results are available for calorons. Zindex theorem for the Dirac
operator coupled to calorons has been established by Nye and $&%jewhile the
Nahm transform itself has been studied by Nye in his thg8}. Nye has identified
the appropriate asymptotic behaviour for calorons, and the corresponding singularity be-
haviour for the Nahm data on the dual circ$é. He has also constructed the Nahm
transform from calorons to Nahm data 6# and from Nahm data o8? to calorons;
however, he has not proved that these are mutually inverse, something that can prob-
ably be done using holomorphic geometry and the cohomological argument of
[9,13,21]

Moreover, it is also reasonable to expect that the above resulis$o@, 4 (as well as
the expected ones far = 1, 3) can be adapted to deal with),-equivariantinstantons on
T4 x R"—4,

3.3. Periodic monopoles

The case of periodic monopoles, thatis= 74 x R, whered = 0, 1, 2. As in the case
of instantons, the Nahm transform yields a correspondence between the following objects:

e monopoles o/ = T¢ x R34;
e solutions of the dimensionally reduced anti-self-duality equations BverT? x R.

The non-periodic casel (= 0) was first described by Hitchin in his classical paji&]
in the simplest case of gauge group SU(2), and later generalised by Hurtubise and Murray
[19] to include all classical groups.

Theorem 9. There exists 4—1correspondence between the following objects

e AnSU(2)connection A on a ranRvector bundleE — R2 and a skew-Hermitian bundle
endomorphism® (the Higgs fieldl satisfying the Bogomolny equatiéth0), and whose
asymptotic expansion as— oo is given by up to gauge transformations and for some
positive integer Kthe monopole numbgr

¢~(' Q)(F—f)+004y|m@pwxr%ami%ﬂ~oa4y
0 —i 2r or

e An Hermitian connectio¥ on a rank k Hermitian vector bundle V over the open interval
I = (-1, 1) and three skew-Hermitian bundle endomorphi§ing = 1, 2, 3) satisfying
Nahm'’s equation$§12), and having at most simple polesrat +1, but are otherwise
analytic. Moreoverthe residues ofTy, T», T3) define an irreducible representation of
su(2) at each pole

The case of periodic monopolet £ 1) is studied by in detail Cherkis and Kapug@j.
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Theorem 10. There exists d—1correspondence between the following objects

e AnSU(2)connection A on a ranR vector bundleE — S* x R? and a skew-Hermitian
bundle endomorphism (the Higgs fieldl satisfying the Bogomolny equati¢h0), and
whose asymptotic expansionias- |x| — oo is given by up to gauge transformations
and for some positive integer(the monopole numbeand parameters, w € R:

0 —i 2T 0 —i

3|
IVa®| ~ O~ 1) and % ~0@r7?).
r

i 0 k 1 i 0 k
A~w+ - =—0+03( ), ¢~v+ ) ~£Iogr+0(1),

e An Hermitian connection B on a rank k Hermitian vector bundle> $* x R ~ C*
and @ satisfying Hitchin's equation§l1), and whose asymptotic expansionsas> oo
are given byup to gauge transformations

|Fp| ~O(s|7%%),  Tr(&(s)*) isboundedforr =1,2,... k-1
and detd(s) ~ —2m(v+iw) | O(eﬂ’”),

A careful study of doubly periodic monopoles (the= 2 case) is still lacking. It is
interesting to note that the Nahm transform of doubly periodic monopolsslisiual
in the sense tha/ = T = T2 x R; in other words, the Nahm transform takes doubly
periodic monopoles into (singular) doubly periodic monopoles, probably permutating rank
and charge.

3.4. K3 surfaces

A very interesting example ofron-flatNahm transform was described by Bartocci et al.
[4,5]. Let M be a reflexivek 3 surface, which is defined by the following requirements:

1. M admits a Kahler fornm whose cohomology clagd satisfiesH? = 2;

2. M admits a holomorphic line bundle whose Chern clasé = c¢1(L) is such that
¢-H=0and¢? = -12;

3. if D is the divisor of a nodal curve o, one hasD - H > 2.

Now let T be the moduli space of instantons of rank 2 with determinant line bun¢ie
thatc; = £) andcp = —1 overM; it can be shown thaf is isomorphic taM as a complex
algebraic variety4]. Since bothVf andT are hyperkahler manifolds, Nahm transform takes
instantons oveM into instantons over'. Furthermore, under appropriate circumstances,
the transform is invertible, and one obtains in particular the following ré&)gt.

Theorem 11. There exists 4—1correspondence between the following objéets 2 and
k>1):

e SU(n) instantons of charge k over;M .
e U(2n + k) instantons of charge k over, With first Chern class given byf.
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Finally, we would like to point out that a similar result also holds for hyperkahler ALE
four-manifolds; a preliminary version was announcegbin(see alsd17]).

3.5. First new example: doubly periodic instantons

Let us now proceed to describe two new exampleaaf-flatNahm transforms. The
second one, described below, is particularly interesting, for it is the only example in which
M is not a hyperkahler four-manifold.

Our first new example of a non-flat Nahm transform is based on the observation that,
once asymptotic parametsis ., «) are fixed, the moduli spackt (1 ¢ ,..«) Of charge one
SU(2) doubly periodic instantons (as described@lireorem $is justT? x R? with the flat
metric[7].

Thus setM = T? x RZandT = M¢u.0) = T2 x R% let E — M be a Hermitian
vector bundle of rank, and letA be an anti-self-dual connection @& Denote the points of
T by the pair(F, B) consisting of a rank 2 Hermitian vector bundieand an anti-self-dual
connectiomB. If the asymptotic state of the connectiardoes not contaig, then the twisted
connectioddp = A ® 1+ 1® B contains no flat factors at infinity, and the Dirac operators
DfB are Fredholn{21]. This means that the Nahm transformed bundle with connection

(E, A) — T are well defined, according to procedureSaction 2 Using the hyperkahler
rotation method oProposition 5one sees that is also anti-self-dual.

Clearly, M can also be regarded as a moduli space of instantorig, @o there is a
Nahm transform that transforms instantonszoimto instantons. It seems reasonable to
conjecture that these transforms are the inverse of one another.

3.6. Second new example: instantons over the four-sphere

Let us now briefly analyse the Nahm transform for the simplest possible compact spin
four-manifold with non-negative scalar curvature. et= $* be the round four-dimensional
sphere, and leT' be the moduli space of SU(2) instantons o§émwith charge one; as a
Riemannian manifold[ is a hyperbolic five-balB® [15].

So letE — $* be a complex vector bundle of rank> 2, provided with an instanton
A of chargek > 1. Nahm transform gives a bundie— B® of rank Z + r, by the index
formula(6). SinceB® is simply connected, this is the only nontrivial topological invariant of
the transformed bundle. This illustrates the wide range of possibilities for a Nahm transform
beyond the confines of hyperkahler geometry.
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